THICCC Homework

Anthony and Nacho

Week 5

Problem 0. Review the notes and convince yourself that we didn't make everything up.

Again, problems requiring additional knowledge are marked with a star.

1 Problems

Problem 1. Prove Fontené's three theorems (in order of difficulty):

- Fontené's second theorem: If a point P moves on a fixed line through the circumcenter O, then its pedal circle passes through a fixed point on the nine-point circle.
- Fontené's third theorem: If P and Q are isogonal conjugates, then their pedal circle is tangent to the nine-point circle if and only if P, Q, and O are collinear.
- Fontené's first theorem: Let △ABC be a triangle such that L, M, and N are the midpoints of BC, CA, and AB, respectively. Furthermore, let P be a point such that D, E, and F are the feet of the altitudes from BC, CA, and AB. Finally, let X be the intersection of lines MN and EF, let Y be the intersection of lines NL and FD, and let Z be the intersection of lines LM and DE. Then, the lines DX, EY, and FZ, the nine-point circle of △ABC, and the pedal circle of P intersect at a point.

Problem 2 (Anti-foreshadowing). Prove the following problem from yesterday's homework:

Let ABCD be a quadrilateral such that no point is the orthocenter of the other three. Show that the nine-point circles of $\triangle ABC$, $\triangle ABD$, $\triangle ACD$, and $\triangle BCD$ intersect at a point.

Problem 3 (c6h2980996). Let ABC be a triangle with orthocenter H and circumcenter O. Let M and N be two points lying on the circumcircle of $\triangle ABC$ such that $MN \parallel BC$. Let P be the point lying on the line HM such that $OP \parallel AN$. Prove that pedal circle of P goes through midpoint of segment HM.

Problem 4 (Diameters). Suppose points A, B, P, and Q lie on a rectangular hyperbola such that PQ passes through the center of the hyperbola, and that APBQ forms a convex quadrilateral in that order. Show that $\angle APB = \angle AQB$.

Problem 5 (Antigonal Conjugates)^{*}. Let $\triangle ABC$ be a triangle with circumcenter O, and let P be a point that is not its orthocenter. Let Q be the reflection of P over the Poncelet point of P. Show that if P^* and Q^* are the isogonal conjugates of P and Q, respectively, then $OP^* \cdot OQ^* = OA^2$.

Problem 6 (USA TSTST 2020/6). Let A, B, C, D be four points such that no three are collinear and D is not the orthocenter of ABC. Let P, Q, R be the orthocenters of $\triangle BCD$, $\triangle CAD$, $\triangle ABD$, respectively. Suppose that the lines AP, BQ, CR are pairwise distinct and are concurrent. Show that the four points A, B, C, D lie on a circle.

The following problems explore some of the named rectangular circumhyperbolae of triangles:

Problem 7 (Jerabek Hyperbola). The line through the circumcenter O and the orthocenter H is called the **Euler line**; its isogonal conjugate is a rectangular circumhyperbola called the **Jerabek** Hyperbola.

- (i) Show that the nine-point circles of $\triangle AOH$, $\triangle BOH$, and $\triangle COH$ all intersect at two common points.
- (ii) Let D, E, and F be the feet of the altitudes from A, B, and C to the opposite side of $\triangle ABC$. Show that the Euler lines of $\triangle AEF$, $\triangle BDE$, and $\triangle CFD$ concur.

Problem 8 (Feuerbach Hyperbola)^{*}. The Feuerbach Hyperbola is the isogonal conjugate of the line through the circumcenter O and the incenter I.

- (i) Gergonne Point*: Let D, E, and F be the points at which the incircle is tangent to sides BC, CA, and AB. Show that AD, BE, and CF concur on the Feuerbach Hyperbola.
- (ii) Nagel Point^{*}: Let D', E', and F' be the points at which the A-excircle, B-excircle, and C-excircle are tangent to sides BC, CA, and AB, respectively. Show that AD', BE', and CF' concur on the Feuerbach Hyperbola.
- (iii) Kariya's Theorem^{**}: Suppose points X, Y, and Z are in the plane such that $IX \perp BC$, $IY \perp CA$, and $IZ \perp AB$, and that IX = IY = IZ. Show that AX, BY, and CZ concur on the Feuerbach Hyperbola.

Problem 9 (Kiepert Hyperbola)^{*}. The **Kiepert Hyperbola** is the isogonal conjugate of the line through the circumcenter O and the symmedian point K (this is the isogonal conjugate of the centroid G.

- (i) Kiepert (1869)^{**}: Suppose X, Y, and Z are outside $\triangle ABC$ such that $\triangle BXC$, $\triangle CYA$, and $\triangle AZB$ are similar isosceles triangles. Show that AX, BY, and CZ concur on the Kiepert Hyperbola.
- (ii) Fermat points^{***}: If we construct equilateral triangles △BXC, △CYA, and △AZB outside △ABC, then the concurrency point of the lines AX, BY, and CZ is called the First Fermat point F⁺. Similarly, if we construct equilateral triangles △BX'C, △CY'A, and △AZ'B pointing inwards, then the concurrency point of the lines AX, BY, and CZ is called the Second Fermat point F⁻. Show that the midpoint of segment F⁺F⁻ is the center of the Kiepert Hyperbola.